

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

B.Sc. PHYSICS HONOURS

Programme	B.Sc. Physics Honours						
Course Title	FUNDAMENTALS OF OPTICS						
Type of Course	Minor (SET III: SEMICONDUCTOR PHYSICS)						
Semester	II						
Academic Level	100 - 199						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Basics of Physics and Chemistry (Plus Two Level)						
Course	This syllabus explores how light behaves, from reflection and bending						
Summary	to creating specific light sources and transmitting them through thin						
	cables.						

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Analyze the principles of reflection			Instructor-creat
	and refraction, applying them to	An	С	ed exams / Quiz/
	explain image formation by mirrors			Practical
	and lenses.			Assignment

CO2	Describe the phenomenon of wave			Practical				
	interference and diffraction, and	Ар	Р	Assignment /				
	solve problems using concepts like			Observation of				
	the double-slit experiment.			Practical Skills				
CO3	Explain the concept of polarization			Instructor-creat				
	and its applications, including the	U	С	ed exams / Quiz/				
	use of polarizers and analyzers.			Practical				
				Assignment				
CO4	Describe the operating principles			Instructor-creat				
	of lasers, including stimulated	U	С	ed exams /				
	emission and population inversion,			Home				
	and identify different laser types.			Assignments				
CO5	Explain the concept of total			Seminar				
	internal reflection and apply it to	Ap	F	Presentation /				
	understand light propagation			Group Tutorial				
	through optical fibers.			Work				
CO6	Able to explain the advantages and	U	С	Viva Voce				
	applications of optical fibers in							
	communication and sensing.							
* - Rei	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Fac	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)							
Metaco	ognitive Knowledge (M)							

Detailed Syllabus:

Modu	Unit	Content	Hrs	Marks
le			(45	(70)
			+30)	
Ι		10	15	
	1	Reflection at plane Mirrors, Reflection at spherical mirror: Basic terms, paraxial rays and paraxial approximation, sign convention, spherical mirror equation, Focal point and focal length	3	
	2	Spherical mirror equation applied to concave mirror, Conjugate points, extended object, lateral magnification, convex mirror and plane mirror	3	
	3	Refraction at spherical surfaces, Gaussian relation	2	

	4	Lens equation, Lens maker's equation.	2		
	Section	n 3.3, 3.4, 3.12, 4.8 - 4.10 of chapter 3 and chapter 4 of Book 1			
II		Wave optics	19	25	
	5	Interference, Young double slit experiment	2		
	6	Coherence and conditions for interference	1		
	7	Interference in thin parallel films	2		
	8 Interference in wedge shaped film, Angle of wedge and thickness of 2 spacer, Colour of thin films				
	9	Newton's rings: determination of wavelength of light	2		
	10	Diffraction: Difference between diffraction and interference, Fresnel and Fraunhoffer type diffraction	1		
	11	Fraunhoffer diffraction at a single slit, double slit (Calculus method is excluded), Plane diffraction grating.	3		
	12	Polarization: Types of polarization, Brewster's law, Production of plane polarized light	2		
	13	Polarizer and analyser, Malu's law, Double refraction	2		
	14	2			
	Section 14.4 – 14.7,15.2, 15.5, 15.6 (upto 15.6.7), 17.6 - 17.7, 18.1, 18.2, 18.4, 18.7, 20.1, 20.2, 20.5, 20.6, 20.8 - 20.11, 20.27 - 20.29, Book 1				
III		Lasers	8	15	
	15	Lasers, Thermal equilibrium, Absorption of a Photon, Spontaneous emission, Stimulated emission, Population inversion	2		

	10		2			
	10	Components of Laser and lasing action	5			
	17	Ruby laser, Nd-YAG laser, Helium Neon laser, Carbon dioxide laser, semiconductor laser.	3			
	Section	ns 22.1, 22.3, 22.4, 22.7, 22.8, 22.9, 22.14, 22.15, Book 1				
IV		Fiber Optics	8	15		
	18	Introduction, Optical fiber, Total internal reflection	2			
	19	Propagation of light through optical fiber	1			
	20	Critical angle, Acceptance angle, Numerical Aperture, Modes of propagation	2			
	21	Classification of optical fibers, Losses in optical fiber, Applications	2			
	22	Fiber optic communication systems, fiber optic sensors.	1			
	Section (24.23	ns 24.1 - 24.6, 24.8, 24.10, 24.11, 24.15, 24.20 - 24.21, 24.23 .1-24.23.2), Book 1				
V		PRACTICALS	30			
	Condu	ct any 6 experiments from the given list and 1 additional experiment,				
	decide	d by the teacher-in-charge, related to the content of the course. The 7 th				
	experi	ment may also be selected from the given list. Other experiments listed				
	here may be used as demonstrations of the concepts taught in the course.					
	Neces	sary theory of experiments can be given as Assignment/ Seminar.				
	1	Determine the refractive index of (a) given liquid and (b)the				
		material of a lens, by forming a liquid lens.				
		• Through this experiment the students are expected to get the				
		concepts of image formation, combination of lenses and				
		radius of curvature of the surface of lens.				

		• Determine the radius of curvature of the lens by Boy's method	
		and hence calculate the refractive indices.	
	2	Determine the focal length of the combination of two lenses	
		separated by a distance.	
		• Determine the focal lengths, f1 and f2 of the two lenses using	
		an illuminated cross-slit screen holder, nodal slide(for placing	
		the lenses) and plane mirror arrangement.	
		• Place the two lenses separated by a distance d, determine the	
		focal length, F of the combination and verify the relation	
		• $\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$.	
		• The combination of the lenses in the eyepiece of the	
		spectrometer/ travelling microscope may be used for the	
		study.	
		 <u>https://www.youtube.com/watch?v=IOIEEtyNPBg</u> 	
		https://www.youtube.com/watch?v=tNo4Ipk74SU	
	3	Determination of the dispersive power of a solid prism using a	
		spectrometer.	
		• Find the angle of the prism and the angle of minimum	
		deviation for prominent lines of the mercury spectrum using a	
		spectrometer.	
		• Calculate the refractive indices corresponding to the colors	
		and find the dispersive power of the material of the prism for	
		two pairs of wavelengths.	
Γ	4	Refractive indices of quartz prism using spectrometer.	
		• Determine the refractive indices of quartz for the ordinary and	
		extraordinary rays of a sodium vapour lamp by arranging the	
		quartz prism at minimum deviation position in the	
		spectrometer.	
		• Verify the polarizations of the ordinary and extraordinary rays	
		using a polaroid.	

5	Determination of wavelengths of mercury spectrum using	
	diffraction grating and spectrometer.	
	• Arrange the grating at normal incidence.	
	• Standardize the grating using the green line of mercury and	
	then find the wavelengths of other prominent lines of the	
	spectrum.	
6	Newton's rings-determination of the wavelength of sodium light	
	• Form of Newton's rings in the air-film in between a	
	plano-convex lens and a glass plate using sodium-source.	
	• Determine the radius of curvature by Boy's method and	
	determine the wavelength of the source.	
	• Optional: In experiment 5 and 6, record a short video of the	
	interference pattern, calibrate the video using scale marked on	
	the glass plate, analyse the video using Tracker tool. From the	
	intensity profile get the locations of the dark rings and	
	calculate the wavelength of the source/thickness of the sample	
	https://physlets.org/tracker/.	
	https://www.youtube.com/watch?v=UCCPkJpUQEw	
7	Air wedge-determination of the radius of a thin wire/human	
	hair/thin foil.	
	• Form interference fringes using sodium-source, in the air-film	
	in between wedge formed by placing the given sample	
	between the glass plates.	
	• Measure the positions of the successive dark bands using a	
	travelling microscope and determine the angle of the wedge	
	and thickness of the sample given.	
8	Single slit diffraction using laser - Determination of slit width.	
	• The laser light diffracted from the narrow slit is allowed to fall	
	on a screen and record the maxima or minima points in a	
	paper.	

		(I	
	• From the width of the central maxima or the position of		
	minimum intensity points, calculate the slit width.		
	• Verify the slit width using a traveling microscope.		
	• Wavelength of laser can be found using diffraction grating of		
	known N.		
9	Study the specific rotation of the sugar solution using a		
	polarimeter.		
	• Determine the specific rotation corresponding to different		
	concentrations of the sugar dissolved in water.		
	• Draw a graph between rotation and concentrations and verify		
	the linear relationship.		
10	Verification of Malus's law using polarizer, analyzer and photo		
	detector		
	• Unpolarized light is allowed to pass through a polarizer and is		
	observed through an analyzer		
	 Vary the angle between the axes of polarizer and analyzer and 		
	measure the intensity of the light (current output of the		
	photodetector).		
	• Plot θ L and $\cos^2 \theta$ L graphs and varify the Malus's law		
	 A flat computer monitor (or LCD TV screen) in plain white 		
	• A flat computer monitor (of LCD 1 v screen) in plain white color can be used as the source of linear polarized light.		
	• The ambient light sensor of the smartphone and the		
	the illuminance and the angles respectively.		
	• A small piece of polarizer (a square of about 1 cm side) from		
	sensor as analyser.		
11	https://arxiv.org/pdf/1607.02659		
11	Spectrometer-Determination of the Cauchy's constants of the		
	given prism		
	• Find the angle of the prism, the minimum deviation angles of		
	the prominent lines of the mercury spectrum and hence		
	calculate the refractive indices for the colors.		
	• Determine A and B from the $\mu - \frac{1}{\lambda^2}$ graph.		

366

12 Viscosity of a liquid - Falling Ball Viscometer		
• Drop a polished steel ball into a glass tube of a somewhat		
larger diameter containing the liquid.		
• Record the time required for the ball to fall at constant		
velocity through a specified distance between reference		
marks.		
• Use the Stoke's law for the sphere falling in a fluid under		
effect of gravity, to estimate the viscosity of the liquid.		
13Surface tension of liquid - Capillary rise method		
• Clamp a clean capillary tube by dipping its lower end into the liquid in the beaker.		
• Measure the rise of water in the tube using a traveling		
microscope.		
• Also measure the radius of the capillary tube using the		
traveling microscope and estimate the surface tension of the		
liquid.		
• Density of the liquid can be determined using Hare's		
apparatus of can be given		
14 Viscosity of a liquid - Poiseuille's Method		
• Fill the liquid in a vertically fixed burette with its lower end		
attached to a capillary tube, placed in horizontal position		
using a rubber tube.		
• Note the time taken to reach each 10cc of water and the heigh	t	
of the corresponding marking.		
• Also measure the radius of the capillary tube using the		
traveling microscope and estimate the viscosity of the liquid.		
15 Static torsion Rigidity modulus		
• Using Searle's static torsion apparatus, determine the rigidity		
modulus of the material of the rod.		
Books and References:		L
1) A Textbook of Optics by N. Subramanyam, Brij Lal, M N Avadhanulu, 25 TH Ec	ition (Boo	ok 1)

2) Optics by Ajoy Ghatak, Tata McGrow-Hill (Book 2)

3) Optics by Eugene Hecht, Addison-Wesley (Book 3)

	PSO	PSO	PSO	PSO	PS	PSO	PO1	PO2	PO3	PO4	PO5	РО	PO
	1	2	3	4	05	6						6	7
CO 1	3	2	2	1	2	0	3	1	1	0	2	1	0
CO 2	3	2	2	1	2	1	3	3	2	1	2	1	0
CO 3	3	2	3	2	2	1	3	2	2	1	2	1	0
CO 4	3	2	2	1	2	0	3	2	2	1	2	1	0
CO 5	2	3	2	1	2	1	3	2	2	1	3	1	0
CO 6	2	3	2	1	2	2	3	2	2	1	3	1	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/	Assignmen	Practical Skill	End Semester
	Practical Exam	t /Viva	Evaluation	Examinations
CO 1	1	1		✓
CO 2	1	1		1
CO 3	1	1		✓
CO 4	1	1		✓
CO 5	1	1		\checkmark
CO 6		1	√	